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Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric 
Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 ( 1991)] using bispectral 
analysis of edge magnetic fluctuations resolved in “k-space.” The strength of nonlinear 
three-wave interactions satisfying the sum rules m t + m2= m3 and nl + n2 = n3 is measured by the 
bicoherency. In the RFP, m= 1, n--R/a (6 for MST) internally resonant modes are linearly 
unstable and grow to large amplitude. Large values of bicoherency occur for two m = 1 modes 
coupled to an m =2 mode and the coupling of intermediate toroidal modes, e.g., n =6 and 7 
coupled to n = 13. These experimental bispectral features agree with predicted bispectral features 
derived from magnetohydrodynamic (MHD) computation. However, in the experiment, 
enhanced coupling occurs in the “crash” phase of a sawtooth oscillation concomitant with a 
broadened mode spectrum suggesting the onset of a nonlinear cascade. 

1. INTRODUCTION 

Fluctuations in plasmas are observed at many frequen- 
cies and wavelengths. The processes which determine the 
evolution of turbulent spectra, such as the saturation of 
linear instability and the cascading of energy from unstable 
to damped waves, are inherently nonlinear. Large-scale 
plasma behavior can also be influenced by nonlinear wave- 
wave interaction such as the generation of “coherent” 
structures, the turbulent generation of magnetic field (dy- 
namo effect), and sawtooth oscillations. It is generally pre- 
sumed the lowest-order coupling of three waves is the dom- 
inant nonlinear wave-wave interaction. In this case, the 
three interacting waves satisfy the sum rule k, + k,=k,. 
The strength of such three-wave interaction can be esti- 
mated from experimental data using statistical bispectral 
analysis. This technique successfully identified three-wave 
interaction in fluids’-’ and nonlinear energy cascading in 
edge plasma fluctuations4 

Plasmas in the Madison Symmetric Torus’ (MST) are 
ideally suited for investigating nonlinear wave-wave pro- 
cesses since the largest amplitude fluctuations (tearing 
modes) strongly interact, and these fluctuations are well 
resolved using a large number of magnetic field sensors 
covering the plasma surface. These sensor arrays accu- 
rately resolve the spatial fluctuations in “k space” and 
time. In this paper, we present the results of bispectral 
analysis of tearing fluctuations applied directly in k space. 
This analysis is applied to experimental data and, for com- 
parison, to theoretical computational data derived from 
nonlinear, resistive, magnetohydrodynamic (MHD) simu- 
lations. Experimental bispectra are presented for two dif- 
ferent phases of the sawtooth oscillation-in between and 
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during the “crash.” During the crash phase, enhanced cou- 
pling is observed, suggesting the onset of a nonlinear cas- 
cade. 

We are also interested in the radial transport caused by 
these global magnetic fluctuations. In earlier work, the 
magnetic fluctuation induced nonambipolar particle trans- 
port given by the correlation of the total current density 
fluctuation and the radial magnetic field fluctuation was 
found to be small.6 Here we will report recent measure- 
ments of the electron particle transport derived from the 
fluctuating electron current measured with an electrostatic 
energy analyzer. We also report preliminary results for the 
electron energy transport given by the fluctuating electron 
heat flux measured with a pyro-bolometric diagnostic. 

The MST is a large reversed-field pinch (RFP) with 
major radius R = 1.5 m, minor radius a=052 m, toroidal 
plasma current I,<600 kA, and poloidal beta &,<20%. 
The measurements reported in this paper were taken in 
lower current plasmas I,,-250 kA with reversal parame- 
ter, FE - 0.15, pinch parameter 0~ 1.7, and edge safety 
factor q a~ -0.025. Typically the data are selected at times 
near the peak in plasma current. 

II. OVERVIEW OF MAGNETIC FLUCTUATIONS 

Magnetic fluctuations are measured in MST with an 
extensive array of magnetic pickup coils. The bispectral 
analysis data were obtained from a 64-station array of trip- 
lets ( B+ , Be, B,) uniformly distributed along the toroidal 
circumference (for the toroidal mode spectrum) and a 16- 
station array of triplets along the poloidal circumference 
(for the poloidal mode spectrum). The features of the 
magnetic fluctuations in MST have been reported in a 
number of papers,6-‘0 and only the results necessary for 
discussion of the bispectral measurements’1,‘2 are summa- 
rized here. The dor&ant magnetic fluctuations occur at 
frequencies f -20 kHz with amplitudes B/B-2% of the 
mean field. These dominant fluctuations are identified as 
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FIG. 1. Amplitude of the n< 14 toroidal modes in a F_ourier series rep- 
resentation of the poloidal magnetic field fluctuation (Bs) from the tor- 
oidal array of 64 pickup cojls. A sawtooth oscillation “crash” event oc- 
curs at 20.5 msec. Here p is the root-mean-square spatial average 
fluctuation amplitude. 

m = 1, n-2R/a (6 in MST) tearing modes. The spectral 
characteristics of the experimental magnetic fluctuations 
quantitatively agree with the characteristics of theoretical 
magnetic fluctuations simulated by a three-dimensional 
(3-D) resistive MHD code,13 except the experimental am- 
plitudes are smaller than the theoretical amplitudes. In 
part, this results from a difference in the Lundquist num- 
bers of the computation (S- 104) and experiment 
(S- 106). An example of the Fourier series decomposition 
of the fluctuations measured by the 64-coil toroidal array is 
shown in Fig. 1. (Note that modes 15-32 are not shown.) 
Only the amplitudes of the modes are shown in this figure. 
Not shown are the phases of the modes which change at 
the characteristic frequencies -20 kHz as the plasma ro- 
tates in the laboratory frame of reference. The slow varia- 
tion ( -2 msec) of the amplitudes corresponds to changes 
during the phase of a sawtooth oscillation.14V’5 In this ex- 
ample, a sawtooth crash occurs at 20.5 msec, easily iden- 
tified by the sudden increase in the low and high n-mode 
amplitudes. The bispectra discussed in Sec. III were ob- 
tained for a time between sawtooth crash events when the 
mode spectrum is relatively narrow and for a time near the 
sawtooth crash when the spectrum is broadened. 

The tearing mode fluctuations are phase locked to each 
other.8-‘0 This is illustrated in Fig. 2(a) by the tendency 
for a spatially localized magnetic structure to appear in the 
“raw” data and more explicitly in Fig. 2(b) where the 
normalized modes, cos[n++6,( t)], for n=6-10 are plot- 
ted. In Fig. 2(a), the box cursor identifies the location of 
the maximum fluctuation. This “bump” rotates toroidally 
in the ion diamagnetic drift direction at a speed - 3 X lo6 
cm/set. The normalized modes in Fig. 2(b) are plotted at 

E 
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0 R 2n 0 R 
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FIG. 2. Phase locking of the dominant m= 1, n-2R/a_Fourier modes 
detected (a) by spatially localized rotating “bump” in Be data and (b) 
explicitly by the Fourier phase alignment of the dominant modes at the 
location of the “bump.” These data are the same as in Fig. 1. 

50 psec intervals and clearly illustrate the phase alignment 
of the composite modes at exactly the location of the lo- 
calized structure. As discussed in Sec. III, such phase lock- 
ing of waves characterizes nonlinear coupling, so the phase 
locking of MST tearing modes is the first evidence for the 
existence of their nonlinear coupling. Phase locking of tear- 
ing fluctuations has been observed in several other RFP 
devices and is apparently a ubiquitous feature of RFP 
plasmas.16-18 Also, the spatially localized structure formed 
by this nonlinear interaction exemplifies a “coherent struc- 
ture” alluded to in the Introduction. 

Ill. NONLINEAR COUPLING OF TEARING MODES 

We measure the nonlinear coupling of tearing modes in 
MST using bispectral analysis directly in k space. This is 
an extension of previous bispectral analysis in frequency 
space.4’ l1 Before discussing these results, the definition for 
and interpretation of bicoherency will be presented. l9 

A. Definition and interpretation of bicoherency 

Quadratic nonlinear coupling of three Fourier modes is 
measurable by the bicoherence, b( n i ,n; ,n3), defined as 

(B*h>B*(ndWnd) 
b(n1’n2’n3)= J(B2(nl)B2(n2))(B2(n3)) ’ 

where, in this case, the toroidal modes satisfy the sum rule 
n3 = n 1 + n2. Similar analysis applies to the poloidal modes. 
In this definition, B(n) represents the magnitude and 
phase of the nth mode in a Fourier series representation of 
the magnetic fluctuation measured by the pickup coil ar- 
rays at the surface of the plasma, and ( ) denotes an en- 
semble average. The bicoherence is normalized such that 
1 b(nl,n2,n3) I< 1. If the three modes n,, n2, and n3 are not 
nonlinearly coupled, 1 b( nl ,n2,n3) 1 =O. If all of the tluctu- 
ation in mode n3 is nonlinearly coupled to modes nl and 
n2, then 1 b( nl ,n2,n3) ] = 1. To see that nonzero bicoher- 
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ence results from phase locking of the three modes, write 
B(n) = 1 B, 1 eeisn, where S, is the spatial phase. Then 

(B*(nt)B*(n,)Bh>) 

= ( 1 B,, 1 I B,,, I I Bn3 I ei(6n1+6n2-6n3)). 

If the phase factor Snl +~,,--cY,~ does not have a statisti- 
cally stationary relationship, the bicoherence is zero. Phase 
locking means a fixed relationship exists between the 
phases of the modes. Such phase locking can result from 
quadratic nonlinear coupling, i.e., 

and Sn3=Snl +Sn2. This example illustrates nonlinear gen- 
eration of mode n3 by quadratic coupling of modes n, and 
n2 in a “sum” interaction, i.e., n3 =tzt +n,. In the “differ- 
ence” interaction, n3=n1-n2, B(n3) a B(nl)B*(n2), and 
4z3=~n14l2. 

Even though three given modes may be entirely non- 
linearly coupled, the bicoherence for this interaction can 
have a value less than unity if the mode n3 is nonlinearly 
coupled in more than one three-wave interaction. The nor- 
malized power in the mode n3 can be written 

B(n’l) B(n’2) 
’ d(B2(n’l> B2(nt2)) ’ 

where Bunc(n3) is the fluctuation uncoupled to other 
modes, and the summation term is the fluctuation quadrat- 
ically coupled to other modes. In this summation, 
b(n, ,n2,n3) represents the quadratic coupling coefficient 
and is identical to the bicoherence when four-wave and 
higher-order nonlinear coupling processes are reducible to 
three-wave coupling processes. To see this, multiply by 
B* ( n r ) B* ( n2) and ensemble average. The assumption 
(B(n’l)B(n’2)B*(nl)B*(n2)) is nonzero only when 
n’, = n t and n’2 = n2 ignores higher-order coupling. 

If instead we multiply by B* (n3) and ensemble aver- 
age, a conservationlike equation for the normalized fluctu- 
ation power in mode n3 is derived: 

l=(B*(ndB”“C(n3))+ 
2 

(B (nd) 
c b2Wt,n’2,nd. 

“‘1 a12 

Even in the case when all of the power in mode n3 is 
nonlinearly coupled [B”“‘( n3) =0], if the summation has 
more than one term which occurs when the mode n3 is 
involved in more than one three-wave interaction, then the 
squared bicoherency of each term is less than unity. The 
sum of all squared bicoherencies involving mode n3 mea- 
sures the total nonlinear behavior of that mode. This fact 
will be important when comparing the measured bispectra 
with MHD modeling of the RFP. 

(a) Experiment 

(b) MHD Code 

FIG. 3. Squared bicoherency of the coupling of poloidal modes, 
m, +mr=mr , (a) in MST data and (b) in MHD theoretical data. The 
value of the squared bicoherency for the coupling m, +mr=m, is re- 
corded vertic@ly from the (m, ,m,) plane. These data are for the poloidal 
component ( Bs) of the magnetic fluctuation. The maximum value of the 
squared bicoherency is 0.35 in (a) and 0.60 in (b). 

8. Comparison of experimental and theoretical 
bispectra 

In the following, the experimental bispectra represent 
the ensemble average of 256 data records, each 256 psec in 
duration, selected from 40 identical discharges. For the 
toroidal spectra, 64 magnetic pickup coils resolve n < 32, 
and, for the poloidal spectra, 16 coils resolve m < 8. Note 
that the coil array is not two dimensional, i.e., each n mode 
includes contributions from all m modes and vice versa. 
The theoretical bispectra are calculated from MHD simu- 
lation data evaluated at r=u, as in the experiment. The 
initial value codeI solves the compressible, resistive MHD 
equations in a periodic cylinder with aspect ratio 3, as in 
the experiment. The code includes I m I < 2 and In I ~42. 
To save computational time, the Lundquist number for the 
theoretical data is S= lo4 whereas in the experiment 
S- 106. An ensemble average of 256 code runs was assem- 
bled, each run initialized by randomizing the phases of the 
magnetic and velocity fluctuations. The data shown below 
have been previously reported12 and are summarized here 
for discussion. 

The squared bicoherencies of poloidal mode couplings 
are shown in Fig. 3. These data represent the time between 
sawtooth crash events. The squared bicoherency of the in- 
teraction m 1 + m2 = m3 is recorded vertically from the (ml, 
m2) plane. The symmetries associated with exchange of 
indices and parity allow the rules m,> I ml ( >O when plot- 
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(a) Experiment b2 
I . 

b2 
(b) MHD Code 

FIG. 4. Squared bicoherency of the coupling of toroidal modes, 
nl+n2=n3, (a) in MST data and (b) in MHD theoretical data. The 
plotting scheme is as for Fig. 3, except these data are for the toroidal 
component ( BQ) of the magnetic fluctuation. The maximum value of the 
squared bicoherency is 0.45 in (a) and 0.61 in (b). 

ting the squared bicoherency, and Nyquist limits must also 
be observed. In both the experiment [Fig. 3(a)] and the 
MHD theory [Fig. 3 (b)], large bicoherency is observed for 
two m= 1 modes coupled to an m =2 mode, i.e., m, = 1, 
m2= 1, m3=2 and ml= - 1, m2=2, m3= 1. The sign of m 
(or n) indicates direction of propagation. 

The squared bicoherencies of toroidal mode couplings 
are shown in Fig. 4. Unlike the poloidal mode coupling, 
toroidal mode coupling occurs between many modes, re- 
flecting the breadth of the n spectrum. A difference be- 
tween the experimental [Fig. 4(a)] and theoretical [Fig. 
4(b)] coupling is the relative breadth of the experimental 
coupling. This may, in part, be due to the different Lun- 
dquist numbers. In both cases, however, the squared bico- 
herencies of “sum” interactions of intermediate modes 
(e.g., n, = 6, n2=7, n3= 13) are largest. The “difference” 
interactions of these modes, found along the nl = 1,2,... 
lines, appear to be weaker. 

Over the years, a detailed theoretical picture of the 
nonlinear coupling of tearing modes has emerged from 
careful diagnosis of the MHD simulations of the RFP.20 
The coupling of magnetic and velocity fluctuations is the 
heart of the MHD dynamo. The primary tearing instability 
results from resistive diffusion of the equilibrium and gen- 
erates the core resonant modes m = 1, n-2R/a (6 in 
MST). These modes nonlinearly couple in both sum and 
difference interactions. The sum interaction generates 
m=2, n 2 4R/a modes which cascade to short scale and 

are dissipated. The difference interaction generates m = 0, 
n - 1 modes. The effect of the m =0 modes is complicated. 
First, they all resonate at the toroidal field reversal surface 
(q=O) near the edge of the plasma. The large island that 
forms quasilinearly flattens the equilibrium profile and de- 
stabilizes m = 1, large-n modes near the reversal surface. 
Second, the m =0 modes couple to these new m = 1 modes 
generating more m = 1 modes which are stable and dissi- 
pative. 

In this MHD picture, the m = 0 modes degenerately 
couple to many m = 1 modes. Since the quasi-steady-state 
equilibria tend to be m =0,2 stable, the m =0,2 fluctuations 
are mostly nonlinear. To the extent the experiment obeys 
MHD, the squared bicoherencies involving n - 1 modes 
should be small since the sum of all three-mode interac- 
tions involving the low-n modes is order unity. In contrast, 
the m = 2 coupling branch generates unique n-modes; the 
squared bicoherencies for the sum interaction of the dom- 
inant unstable modes n-2R/a should be large. Qualita- 
tively this characterizes the toroidal mode coupling bico- 
herencies shown in Fig. 4. Unfortunately, the lack of 
single-helicity identification of the experimental fluctua- 
tions prevents an unambiguous quantitative comparison of 
the experiment and MHD theory. We note, however, that 
the observed phase locking of the m = 1, n - 6 modes in the 
experiment (Fig. 2) is more likely mediated by m =0 cou- 
pling than m =2 coupling since all of the m = 1, n - 6 
modes can be coupled to the same m = 0, n - 1 modes, i.e., 
themodesm=1,nandm=1,n+1coupletom=O,n=1, 
the modes m= 1, n and m= 1, n+2 couple to m=O, n=2, 
etc. In this case, the phase of the magnetic bump is just the 
phase of the m = 0 modes. 

The data above are for times between sawtooth crash 
events. During the crash, enhanced coupling is observed. 
The squared bicoherencies for the crash phase are shown in 
Fig. 5. In addition to the coupling of two m= 1 and an 
m=2 mode, strong coupling of two m=2 and an m=4 
mode is observed. There are also subdominant peaks for 
the coupling of the m = 1, 3, and 4 modes. Strong coupling 
of toroidal modes occurs between all resolved modes, con- 
sistent with the broadened spectrum observed during the 
crash as in Fig. 1. The enhanced nonlinear coupling during 
this phase of the sawtooth oscillation strongly suggests an 
onset of nonlinear cascading rather than sudden destabili- 
zation of many modes resulting from sudden changes in 
the equilibrium profiles. 

IV. MAGNETIC-FLUCTUATION-INDUCED TRANSPORT 

The correlations of fluctuating quantities which can 
yield radial transport are listed in Table I. These correla- 
tions are classified as electrostatic, where radial transport is 
convected by the fluctuating radial EXB particle drift, or 
as magnetic, where radial transport results from parallel 
streaming along stochastic field lines. The electrostatic 
terms have been measured in the edge of MST.21*22 The 
electrostatic-fluctuation-induced particle transport ac- 
counts for a large fraction of the global particle transport, 
but the electrostatic-fluctuation-induced energy transport 
is small compared to global energy transport. 
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FIG. 5. Squared bicoherency of the coupling of (a) poloidal modes and 
(b) toroidal modes during a sawtooth oscillation “crash” event in MST. 
The maximum value of the squared bicoherency is 0.52 in (a) and 0.42 
in (b). 

The magnetic-fluctuation-induced nonambipolar parti- 
cle transport has been measured to be small in the edge.6 
Here we report recent results for electron transport mea- 
sured by correlating the fluctuating electron current and 
magnetic field. The electron current is measured in the 
edge of MST with a two-channel, pinhole, electrostatic en- 
ergy analyzer.23 This diagnostic measures the current on a 
magnetic field line, both in the “forward” and the “back- 
ward” directions. Pickup coils measure the fluctuating 
magnetic field at the location of the current measurement. 
The frequency resolved cross-coherence and cross-phase 
are shown in Fig. 6. The current measurement excludes 
low-energy electrons ( 5 50 eV) due to hardware limita- 
tions; in the future, we hope to include all electron energies 
in the measurement. For frequencies -20 kHz, corre- 

TABLE I. Fluctuation-induced-transport fluxes resulting from quadratic 
correlations. Negligible mean electron drift is assumed. 

Electrostatic Magnetic 

Particle transport 
-  -  

(Jll i,r 4)  

eB0 

Current transport 
-- 

(JII 4 ) 
Bo 

Energy transport G-6 ) (@I e 4) 
Bo Bo 

Coherence 

(a) 
A 

0 20 40 60 80 100 
Frequency &Hz) 

FJG. 6. Cross-spectral properties of parahel electron current fluctuations 
(J,, ,) measured by an electrostatic electron energy analyzer and radial 
magnetic field fluctuations (B,) detected with a magnetic pickup coil. The 
cross-coherence is shown in (a) and the cross-phase in (b). The current 
includes electrons with energy Z 50 eV and was collected at radius r/a 
=0.95. 

sponding to the tearing mode fluctuations, the cross-phase 
is rr/2 giving no transport. Integrating over the frequency 
band 15-25 kHz where there is statistically significant co- 
herence, the electron transport is less than 5% of the global 
particle transport. Recalling the previous result of negligi- 
ble nonambipolar particle transport, we conclude the 
magnetic-fluctuation-induced ion transport in the edge is 
small as well, assuming the electron current is dominated 
by electrons with energy 2 50 eV. 

We are also beginning to measure the fluctuating elec- 
tron parallel heat flux which, correlated with the magnetic 
field fluctuation, directly yields the magnetic-fluctuation- 
induced electron heat transport. The measurement of the 
heat flux is given by a pyro-electric bolometer diagnostic.” 
Like the electron energy analyzer, it has two channels for 
measuring the heat flux from both the “forward” and 
“backward” directions on a magnetic field line. The pyro- 
electric bolometer uses gold-plate LiTiO, crystals as sen- 
sors and has a bandwidth of -50 kHz. Frequency power 
spectra for the “forward” and “backward” heat fluxes are 
shown in Fig. 7; the fluctuations peak near the tearing 
mode frequencies. The first estimate using the measured 
heat flux for the magnetic-fluctuation-induced electron 

Parallel Heat Flux 

I ! 
40 60 
Prequ.ncy(kAz) 

FIG. 7. Frequency power spectra for the “forward” ($ , ) and “back- 
ward” ($1 b) fluctuating parallel electron heat flux measured with a pyro- 
bolometer. The fluctuation is peaked at low frequency, near the dominant 
tearing modes. 
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heat transport accounts for - 30% of the nonradiated glo- 
bal heat flux at the edge. Work is in progress to quantify 
the transparency of the pinhole estimated to be -5O%, so 
the preliminary best estimate for the magnetic-fluctuation- 
induced electron energy flux is -60% of the nonradiated 
global heat flux. 

V. SUMMARY 

Quadratic nonlinear coupling of tearing modes has 
been measured in MST using bispectral analysis. Compar- 
ison of the coupling of RFP tearing modes in the experi- 
ment to detailed theoretical predictions developed in recent 
years is facilitated by directly comparing experimental and 
theoretical bicoherencies. The experimental and theoretical 
bicoherencies qualitatively agree, but the coupling of tor- 
oidal modes is generally more broad in the experiment. In 
the “crash” phase of a sawtooth oscillation, the coupling of 
both poloidal and toroidal modes broadens. The couplings 
of unstable m = 1, n - 6 core resonant modes to m =2, 
n - 15 modes have the largest values of bicoherency. The 
couplings of these same unstable modes to m =0, n - 1 
modes have relatively small bicoherency, but this is con- 
sistent with the expectation of degeneracy for the m=O 
couplings. We note that the observed phase locking of the 
dominant unstable modes m = 1, n - 6 is more likely medi- 
ated by the m=O coupling branch because of this degen- 
eracy. 

Measurement of fluctuation-induced transport is ongo- 
ing in MST. Preliminary measurements indicate that the 
magnetic-fluctuation-induced electron transport is small in 
the edge. This result and the previous result for small non- 
ambipolar magnetic-fluctuation-induced transport imply 
the ion magnetic-fluctuation-induced transport is small in 
the edge as well. The fluctuating parallel heat flux is mea- 
sured in MST using a pyro-bolometric diagnostic. Prelim- 
inary measurements of the electron magnetic-fluctuation- 
induced energy flux indicate it is a substantial fraction of 
the non-radiated energy flux at the edge. 
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